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ABSTRACT

Planetary range data offer the most promising means to test the validity of the Strong Equivalence
Principle (SEP). Here we derive and compare analytical expressions for the perturbation in the “range”
expected from an SEP violation predicted by the “variation-of-G” method and by the “two-times” approach.
The dominant term in both expressions is quadratic in time. Analysis of existing range data should allow
a determination of the coefficient of this term with a one-standard-deviation uncertainty of about 1 part in

10t yr— 1,

Subject headings: cosmology — planets: general — relativity — radar astronomy

I. INTRODUCTION

The Strong Equivalence Principle, or SEP (Will 1979;
Thorne, Lee, and Lightman 1973; Canuto and Goldman
19824, b), demands that local physics, described in a local
Lorentzian frame, be the same at any time and anywhere in
the universe. A violation of the SEP could thus be claimed if
one could prove that cosmological effects influenced the
outcome of local experiments. Although one may consider a
variety of experiments of a nongravitational nature, there is
one gravitational experiment that appears to offer useful
accuracy for testing a violation of the SEP of cosmological
origin: the measurement, with atomic clocks, of the round-trip
travel time (“two-way range”) of radio signals transmitted
from the Earth and reflected by other planets or transponded
by spacecraft in heliocentric orbit. If the atomic clock measure-
ments indicated that there were secular changes in the orbital
periods of the Earth and the planet or spacecraft, not otherwise
accounted for by “classical” effects on these orbits, then one
would be led to infer that an SEP violation has been found.

The most suitable data presently available for such a test
consist of the radar ranging measurements for the inner
planets and, especially, the radio ranging measurements for
the Viking landers on Mars. The latter ranging measurements
have an intrinsic accuracy sufficient to determine the secular
rate of change in orbital period, normalized to that period
(“P/P”), with a standard error of about 1 part in 10! yr~?,
or less. However, a present lack of understanding of the
systematic errors affecting the analysis of these data is
preventing the achievement of this low standard error (Shapiro
and Reasenberg 1980; Hellings 1982). It is important to gain
this understanding since a violation of the SEP of cosmological
origin would be expected to lead to inferred values of P/P
of5-10 x 10~ **yr~ !, the approximate span of values currently
estimated for the Hubble constant whose inverse is a measure
of the age of the universe. At present, the experimental bound

on “nonclassical” contributions to P/P is of order 10~ 1° yr 1
(Reasenberg and Shapiro 1976).

‘The analysis of these ranging data requires that one employ
a set of dynamical equations to describe the motion of bodies
in the solar system. To detect most readily an SEP violation,
it is useful to modify the standard SEP-conserving dynamical
equations to include a parameterization of the effect for which
one is searching. This parameterization is by no means unique:
different theoretical models may involve different concepts of
an SEP violation, resulting in different dynamical equations.
As an example, we -analyze more closely the interpretation
of ranging to a planet in the hypothetical case in which
only test-mass planets orbit the (point-mass) Sun. Such a
planet, revolving about the Sun, can be considered as a clock
governed solely by gravity: a gravitational clock. In the process
of monitoring its period with an atomic clock, one measures
directly the ratio of the periods of the two clocks. From this
point of view, ranging experiments imply two clocks, based
on two independent dynamics: gravity and electromagnetism
(see, for example, Canuto and Goldman 19824, b).

Two methods of parameterization have been proposed to
seek evidence of an SEP violation (i.e., any nonlinear relation
between the “natural” units of the two types of clocks); one
is the “variation-of-G” method and the other is the “two-
times” method. The theoretical aspects entailed by a consistent
implementation of the two methods, specifically the categoriza-
tion of gravity theories into two types of metric theories, as
well as the implications for nongravitational physics have
recently been discussed by Adams et al. (1983) and by
Canuto and Goldman (1983). Here we discuss the two methods
and show that for the data analyzed thus far, they lead to
equivalent results. However, differentiation between the two
would be important if a violation were to be found, because
it then would restrict SEP-violating theories and could allow
useful inferences to be made about the physical meaning and
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implications of an SEP violation. The two methods to be
discussed do in fact offer very different views of an SEP
violation.

II. METHOD I

The basic assumption of Method I (the “variation-of-G”
method) is that an SEP violation does not change the form
of Newton’s equations in atomic units, except that the
gravitational coupling becomes a time-dependent function, so
that .

d*x G(t)M
a2 - ()3 %Xk, 1)

where G(t) denotes the (assumed) time-dependent gravitational
constant and where M, denotes the (constant) mass of the
Sun and x* (k=1, 2, 3) the Cartesian coordinates of the
distance r between a (test-mass) planet and the Sun (see
Shapiro 1964 and Shapiro et al. 1971; for motivation, see
Dirac 1938). If we consider only first-order effects, more than
adequate for the time intervals of current interest, we may
substitute

G(t) = Go + Got (2)
in equation (1) and obtain the first-order solution:
#0 = (1= 2 et ®)
Go
where the variable t* is defined by
Go
t = — ¢ 4
t+ ( Go)t , “)

where a dot denotes differentiation with respect to ¢, and
where x,(¢) is the solution to equation (1) corresponding to
G = Gy, a constant. The measured quantity 7, the round-trip
time of a radio signal, can be represented adequately for our
purposes by

ct=|x; — x5/, (5)

where ¢ is the speed of light and x; and x, denote the
vector positions of the Earth and the “target” planet and
here are solutions of equation (1) in the limit that the planet
masses are vanishingly small, an adequate approximation for
present purposes. Since the ranging experiments are performed
using atomic clocks, we identify t with the time interval
measured by an atomic clock, i.e., we assume equation (1)
to be valid in atomic units. Substituting equations (3) and (4)
into equation (5), we derive

0t = 14(t) — 1o(t) = — 1 (g—‘(’)) [1 - t(:—(:)) (6)

which represents the perturbation in the range caused by an
SEP violation since 1, represents the round-trip time in the
absence of an SEP violation.

III. METHOD 11

In Method II Newton’s equations are assumed to hold in
their usual form in gravitational units (subscript E, for
Einstein) :

dszk GOMO :
e~ X ™

where G, and M, are constant.
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Since distances are measured by travel times of light signals,
we assume the transformation between atomic and gravita-
tional units is the same for both length and time intervals
(see, also, Dirac 1974 and 1979):

dxg(tg) = Bu(t)dx(t) , dtg = Bu(t)dt . (8)
As before, we can write to first order
mo=1+ (3 10 At =1, o)
a/ O

where we introduce the function f,(t) to conform with previous
usage (Canuto and Goldman 19824, b). The variation ét in
the range given by equation (5) can then easily be evaluated as

ot = 1y(t) —10(2) = —tro(ﬁ—:)o [1 - % t(:—Z)] . (10)

Using equations (8) and (9), we can also transform equation

(7) into atomic units:
d>x* GoM B\ GoM B\ dx*
=t ), e ()

i r?
IV. COMPARISON OF THE TWO METHODS

The two methods presented above differ in the treatment
of an SEP violation. This contrast is illustrated by a comparison
of equation (11) with equation (1), after modification of the
latter by substitution of equation (2). In atomic units,
Method I conserves angular momentum per unit mass J,
whereas Method II does not because of the last term in
equation (11), a viscosity-like term which is not present in
the modified equation (1). Hence, in atomic units, for a planet
in a circular orbit around the Sun (at a distance R and
with a period P), Method I yields, using Kepler’s laws
(2n)*R3/P? = G(t)M,, and J = 2nR?*/P = constant,

R_1P__ G )
R 2P G
ie., a decreasing G(t) implies that planetary orbits expand
and periods get longer. By contrast, in Method II (in atomic
units), the ¢ component of the “in-plane” polar-coordinate
form of equation (11) yields ¢r*B, = constant, which, for a
circular orbit of radius R and period P, gives

2nB, R*/P = constant , (13)

expressing the modified angular momentum conservation law.
The corresponding r component of equation (11) gives for a
circular orbit

(27[)2R3 _ GO Mo
Tpr T g (14)
From equations (13) and (14), one finds
R P B 16 (15)

R P B, 2G’
where in the last step we have used the fact that in Method II,
the gravitational constant G satisfies GB,* = G, = constant
(Canuto and Goldman 1982a). Therefore, in this method, a
decreasing G(t) implies that planetary orbits shrink and periods
get shorter.
If there were data sensitive to both the linear and the
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quadratic terms in 6, and if one of equations (6) and (11)
were correct, it would be possible to deduce the correct one.
For the data analyzed so far (see, for example, Reasenberg
and Shapiro 1976), a useful bound could be placed only on the
quadratic term; hence, in this case the two methods are
equivalent: ‘
~ GO . 2 ~ 1 ﬂa . 2

(67)[ ~ (GO)Tot 5 (57)[] ~ 3 (Ba)ofot 5 (16)
since these two expressions have identical signatures and are
therefore equally useful in a search for a non-null coefficient of
the quadratic term, the hallmark of an SEP violation.

This conclusion is in accord with the previous claim by
Shapiro and Reasenberg (1980), based on a similar but less
general analysis: the goal of “smoking out” the presence of
any SEP violation can be achieved equally well using Method I
or Method II, if the data are usefully sensitive only to the
quadratic term.
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The Viking data in combination with planetary ranging
data may, however, allow the determination of useful values
for the coefficients of the linear and the quadratic terms, if
the above-mentioned problems with systematic errors can be
overcome. At present two groups, one at the Harvard-
Smithsonian Center for Astrophysics and the other at the Jet
Propulsion Laboratory (the latter in collaboration with
Canuto and Goldman) are analyzing these data using both
methods. More useful results than hitherto obtained should
be soon forthcoming at least for the coefficient of the quadratic
term in equation (6) or (10).
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